## LAAS Siting Activity: Tilted Ground Model

Ian M. Barton
Joseph M. Kelly
Michael F. DiBenedetto

Joint University Program Review Summer 2002 Ohio University



# LOCAL AREA AUGMENTATION SYSTEM (LAAS)



#### **IMLA ANTENNA**





Avionics Engineering Center



## **Immediate Objectives**

- Simulate the effect of multipath from sloped ground
- Investigate effects of ground constitutive parameters on reflection coefficient and resulting errors
- Examine how phase center height (PCH) affects multipath envelope



## **Long Term Objectives**

Provide guidance materials to siting engineers

Develop a more comprehensive MP model



#### **Description**

- EM model to interface with OU receiver MP model
- Includes MLA 200 pattern data
  - » Developed by OU and dB Systems for LAAS
- Final results: smoothed PR error vs. satellite elevation
  - » Parametric search



## **EM Model Inputs**

- Constitutive parameters of ground (average)
  - » Conductivity = 0.012 (S/m)
  - » Relative permittivity = 15
  - » Relative permeability = 1
- Ground tilt (-5 to 5 deg)
- Satellite elevation profile (initial, rate, final)
- PCH of antenna (3m to 15m)





Ground Tilt Study: Geometric Illustration



## **EM Outputs**

- Relative strength of MP signal
- Phase difference
- Relative path delay
- Signal arrival angles
- 5Hz sampling frequency



#### Receiver model

- MLA pattern data used to compute relative signal strengths based on arrival angles
- Receiver model calculates smoothed PR error
  - » Causal
  - » Tracking loops modeled
  - » Narrow correlator, carrier smoothed









#### **Note**

- The objective of the investigation is to isolate the effects of tilted ground.
- Therefore, the following are excluded...
  - » lonspheric distortions
  - » Near-field effects
  - » Phase center angular dependence
  - » Noise



#### **Conclusions**

- Ground tilt shifts error envelope up by the tilt angle with some compression or expansion
  - » Effects are well-behaved and change gradually
- Higher PCH causes larger errors but faster oscillations, allowing more effective filtering
- Higher ground conductivity causes larger errors

